1. Find $f'(x)$ given that $f(x) = 4\sqrt{\arctan(x^9)}$

$$f(x) = 4\sqrt{\arctan(x^9)}$$

$$f(x) = (\arctan(x^9))^{\frac{1}{4}}$$

$$f'(x) = \frac{1}{4}(\arctan(x^9))^{-\frac{3}{4}} \cdot \frac{d}{dx}(\arctan(x^9))$$

$$f'(x) = \frac{1}{4}(\arctan(x^9))^{-\frac{3}{4}} \cdot \left(\frac{1}{x^{18} + 1}\right) \cdot \frac{d}{dx}(x^9)$$

$$f'(x) = \frac{1}{4}(\arctan(x^9))^{-\frac{3}{4}} \cdot \left(\frac{1}{x^{18} + 1}\right) \cdot 9x^8$$

2. Suppose that A represents the number of grams of a radioactive substance at time t seconds. Given that $\frac{dA}{dt} = -0.125A$, how long does it take 12 grams of the substance to be reduced to 4 grams?

First recall that $\frac{d}{dx} = ky$ so $y = ce^{kx}$. So $\frac{dA}{dt} = -0.125A$ and $A = ce^{-0.125t}$

Plugging in $A = 12$ when $t = 0$ gives us $12 = ce^{-0.125*0}$. Thus, $A = 12e^{-0.125t}$

$$4 = 12e^{-0.125t}$$

$$\ln\left(\frac{4}{12}\right) = -0.125t$$

$$t = \frac{\ln\left(\frac{1}{3}\right)}{-0.125} = 8 \ln(3)$$
\[t = 8 \ln(3) \]
3. A streetlight is mounted at the top of a tall pole with $H = 16.5$ ft. Jennifer’s height is $h = 5.5$ ft tall. She walks away from the pole with a speed of 8 ft/s along a straight path. How quickly is the length of her shadow on the ground increasing when she is 15 ft from the pole?

Given: $\frac{dx}{dt} = 8$, we want $\frac{dy}{dx}\big|_{x=15}$

Use the below diagrams to help solve the problem

![Diagram showing the relationship between the pole, light, and shadow](image)

\[
\frac{X + Y}{H} = \frac{Y}{h} = X + Y = \frac{Y}{h} * H = 3Y
\]

\[X = 2Y\]

\[\frac{d}{dt}(X) = \frac{d}{dy}(2Y)\]

\[\frac{d}{dx} = 2 \frac{d}{dy}\]

\[8 = 2 \frac{d}{dy}\]

\[\frac{d}{dy} = 4\]

Therefore, the shadow length is increasing at a rate of 4 ft/s
4. The top of a ladder slides down a vertical wall at a rate of 8 m/s. At the moment when the bottom of the ladder is 4 meters from the wall, it slides away from the wall at a rate of 15 m/s. How long is the ladder?

Note that L is a constant length.

Given: \(\frac{du}{dt} = -8 \) and \(\frac{dx}{dt} \big|_{x=4} = 15 \)

We want L:

\[
X^2 + Y^2 = L^2
\]

\[
\frac{d}{dt}(X^2 + Y^2) = \frac{d}{dt}(L^2)
\]

\[
2X \frac{dx}{dt} + 2Y \frac{dy}{dt} = 0
\]

\[
2 \times 4 \times 15 + 2 \times Y \times (-8) = 0
\]

\[
Y = \frac{15}{2}
\]

\[
L = \sqrt{X^2 + Y^2}
\]

\[
L = 8.5 \text{ m}
\]
5. Find the absolute minimum y-value of the given function:

\[y = \frac{2x}{\sqrt{x - 81}} \]

Domain of the function: \(x > 81 \).

\[y' = \frac{2 \cdot \sqrt{x - 81} \cdot (-2x) \cdot (\frac{1}{2}) \cdot (x - 81)^{-\frac{1}{2}}}{(\sqrt{x - 81})^2} \]

\[y' = \frac{2\sqrt{x - 81} - \frac{x}{\sqrt{x - 81}}}{x - 81} \]

\[y' = \frac{2(x - 81) - x}{(x - 81)(\sqrt{x - 81})} \]

\[y' = \frac{x - 162}{(x - 81)\sqrt{x - 81}} \]

There is an absolute max at \(x = 162 \) and that amount is 36, which can be found by plugging 162 into the function for \(y \).
6. A farmer wishes to fence off three identical adjoining rectangular pens as in the diagram shown, but only has 600 feet of fencing available. Determine the values for x and y which will maximize the total area enclosed by these three pens.

\[\text{Area} = 3xy \]
\[\text{Perimeter} = 600 = 6x + 4y \]

\[4y = 600 - 6x \]
\[y = 150 - 1.5x \]

Area is now equivalent to:

\[\text{Area} = 3x \times (150 - 1.5x) \]
\[\text{Area} = 450x - 4.5x^2 \]

Now, we must maximize A for x in the range of (0, 100)

\[0 = 450 - 9x \]
\[9x = 450 \]
\[x = 50 \]

Check for the values of A':

\[+ + + \quad - - - \]
\[0 \quad 50 \quad 100 \]

So we can see that there is an absolute maximum at \(x = 50 \). Evaluate y at \(x = 50 \)

\[y = 150 - 1.5 \times (50) \]
\[y = 75 \]

\[\text{Area} = 3 \times 50 \times 75 = 11,250 \text{ ft}^2 \]
7. Find \(\frac{dy}{dx} \) given the following:

\[
\sin(x^2 + y^3) = 5y + 8x
\]

It is okay to leave your answer in terms of both \(x \) and \(y \).

\[
\frac{d}{dx}(\sin(x^2 + y^3)) = \frac{d}{dx}(5y + 8x)
\]

\[
\cos(x^2 + y^3) \cdot (2x + 3y^2 \cdot \frac{dy}{dx}) = 5 \cdot \frac{dy}{dx} + 8
\]

\[
2x \cdot \cos(x^2 + y^3) + 3y^2 \cdot \frac{dy}{dx} \cdot \cos(x^2 + y^3) = 5 \cdot \frac{dy}{dx} + 8
\]

\[
(3y^2 \cos(x^2 + y^3) - 5) \frac{dy}{dx} = 8 - 2x \cos(x^2 + y^3)
\]

\[
\frac{dy}{dx} = \frac{8 - \cos(x^2 + y^3)}{3y^2 \cos(x^2 + y^3) - 5}
\]

8. Evaluate the following derivatives:

(a) \(\frac{d}{dx} \cos(x) \)

\[
\frac{d}{dx} \cos(x) = -\sin(x)
\]

(b) \(\frac{d}{dx} \csc(x) \)

\[
\frac{d}{dx} \csc(x) = -\csc(x) \cot(x)
\]

(c) \(\frac{d}{dx} \tan(x) \)

\[
\frac{d}{dx} \tan(x) = \sec^2(x)
\]

(d) \(\frac{d}{dx} \arcsin(x) \)

\[
\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}
\]
(e) \[\frac{d}{dx} \ln(x) \]
\[\frac{d}{dx} \ln(x) = \frac{1}{x} \]

9. A function \(f(x) \) has the first derivative \(f'(x) = e^{0.5x}(10x - 60) \)

(a) Upon which interval is \(f(x) \) increasing?

\[
\begin{array}{c|c|c}
\text{Values of } f'(x): & + & - \\
\hline
0 & 6 & \\
\end{array}
\]

Based off of this, we can say \(f \) is increasing on the interval \((6, \infty)\). So the answer is \([6, \infty)\).

(b) Upon which interval is the graph of \(f(x) \) concave down?

\[
f'(x) = 0.5e^{0.5x}(10x - 60) + e^{0.5x} \cdot 10
\]

\[
f'(x) = e^{0.5x}(0.5(10x - 60) + 10)\]

\[
f'(x) = e^{0.5x}(5x - 20)
\]

\[
\begin{array}{c|c|c}
\text{Values of } f'(x): & + & - \\
\hline
0 & 4 & \\
\end{array}
\]

The function is concave down on the interval \((-\infty, 4)\)
10. Evaluate each of the following limits:

(a) \[\lim_{x \to \infty} \frac{2 \ln(x)}{\sqrt[3]{x}} \]

\[\lim_{x \to \infty} \frac{2 \ln(x)}{\sqrt[3]{x}} = 2 \lim_{x \to \infty} \frac{\ln(x)}{\sqrt[3]{x}} \]

Using l’Hoptial:

\[2 \lim_{x \to \infty} \frac{1}{x} = 2 \lim_{x \to \infty} \frac{3}{x^{2/3}} = 2(0) = 0 \]

\[\left(\text{Blue} = \sqrt[3]{x}, \text{orange} = 2 \ln(x) \right) \]

(b) \[\lim_{x \to 0} \frac{e^{10x} - 1}{5x} \]

For this limit we must employ l’Hopital’s Rule

\[\lim_{x \to 0} \frac{e^{10x} - 1}{5x} = \lim_{x \to 0} \frac{10e^{10x}}{5} = 2 \]
\[\lim_{x \to \infty} \frac{e^{10x} - 1}{5x} \]

The numerator approaches infinitely much more rapidly than the denominator, thus the \(\lim_{x \to \infty} \to \infty \)

(Note about plots, these plots do not have the coefficients attached to \(x \) due to size constraints of the page. The general relation still holds and, in fact, is exacerbated by the coefficients)