
Daniel Gros, Gurupraanesh, Dr Jimmy Peng
Department of Electrical and Computer Engineering, College of Engineering, University of Illinois at Urbana-Champaign

GUI for Sensitivity Analysis for Multi MicroGrid Networks

ACKNOWLEDGEMENTS

This was possible with the help of Gurupraanesh and Dr. 
Jimmy Peng of the Power Systems Research Laboratory at the 
National University of Singapore.

AIM

Develop a GUI that will display graphs based on 
parameters that were input by the user or based 
on pre-existing MATLAB scripts.

The GUI will be used as a verification tool by 
researchers to reproduce the research done at the 
NUS Power Systems Research Laboratory.

This GUI is also planned to be made open source 
at a later date, ensuring a transparent and 
verifiable research tool.

This GUI will also be able to identify which 
sources are most critical towards their effect on 
improving damping, aka minimizing the 
instability of the system.

INTRODUCTION

GUIs, short for Graphical User Interfaces, are 
used daily by most people to facilitate interaction 
with computers. As opposed to command line 
interfaces that are entirely text based, GUIs 
include windows, buttons, and other graphics 
that make it more user friendly. Most software 
uses GUIs for ease of use. For example the 
famous word processor, Microsoft Word, utilizes 
a GUI for most of its features including font type 
selection and font color selection.

Multi MicroGrid Networks are systems that 
integrate multiple sources of power generation 
(solar PV, wind) with storage solutions (battery 
banks, fuel cells) such that several “microgrids” 
are formed that are each capable of operating 
independently in case of emergencies. These 
systems are the future of distribution grids.

In order to provide power balance in the system 
certain types of controls must be used that share 
the power amongst all its sources. When 
operated as a multi-source network this sharing 
leads to an oscillating response, similar to tug of 
war. The oscillation can cause line or source 
tripping, resulting in blackouts. To restore 
normal operation damping must be increased; in 
other words the amplitude of the oscillations 
must be decreased by draining energy from the 
system. 

METHODS

MATLAB’s Standalone Application creator failed for heavy restrictions and licensing issues (during distribution).

Python and many of its GUI frameworks offered very few restrictions and no licensing problems. The first two 
tried, Kivy and PySide, had issues with a small online community and non-native looking GUI and compatibility 
issues. The GUI framework that worked best was PyQt5.

In order to upload the MATLAB scripts into the python code, the MATLAB scripts were converted into python 
packages which were then imported into the python code and used. 

The libraries used for statistical graphics were seaborn and matplotlib, which offered aesthetic designs and lots of 
functionality.

All common methods for creating the standalone application from the python code (PyInstaller, Py2exe, 
cx_Freeze) failed because of the plotting libraries used. Thus Pynsist was used, which doesn’t freeze the python 
code into an executable file, but instead downloads all the python libraries necessary onto the computer and then 
runs the application as if it were a python file (This is all done automatically once the user double clicks on the exe 
file).

RESULTS

CONCLUSIONS

The project was successful and there currently is a working 
prototype of the graphical user interface. However there are a 
few bugs and improvements that need to be made for future 
version of the GUI. 

Bugs:

• Within the compare window under the “Go to Pole Zero 
Plot Dropdown Menu” tab, the first plot doesn’t display the 
data points. The cause for this problem is unknown. 

• Under the “Input My Own Values” tab. If numbers are put 
into the appropriate fields but the quantity of numbers in 
each field is incorrect the application will crash instead of 
displaying an “Invalid Input” warning as it does with other 
types of errors.

Improvements:

• Setting a fixed size for the main menu window without 
restricting the resizing of other windows

• displaying a loading bar while the GUI is starting to let the 
user know that the application is loading and he/she has to 
wait. 

• Organizing the code in a way that makes it easy to add 
additional functionality like different types of graphs and 
the ability to compare three or four different plots instead 
of just two. This improvement was attempted but soon 
abandoned because of time constraints.

• Create executable in a different manner. The current one 
uses up too much space as it downloads the entirety of 
many python libraries.

All files and 
packages used 
to make GUI

Install a 
standalone 
application by 
double clicking on 
the executable

Main Menu. Three different options offered

Compare data graphically

Input your own parameters

Display data through pole-zero plots and other graph types

Source A is the most sensitive in these graphs

Standalone Application


